Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38559112

RESUMO

Investigating the molecular, cellular, and tissue-level changes caused by disease, and the effects of pharmacological treatments across these biological scales, necessitates the use of multiscale computational modeling in combination with experimentation. Many diseases dynamically alter the tissue microenvironment in ways that trigger microvascular network remodeling, which leads to the expansion or regression of microvessel networks. When microvessels undergo remodeling in idiopathic pulmonary fibrosis (IPF), functional gas exchange is impaired due to loss of alveolar structures and lung function declines. Here, we integrated a multiscale computational model with independent experiments to investigate how combinations of biomechanical and biochemical cues in IPF alter cell fate decisions leading to microvascular remodeling. Our computational model predicted that extracellular matrix (ECM) stiffening reduced microvessel area, which was accompanied by physical uncoupling of endothelial cell (ECs) and pericytes, the cells that comprise microvessels. Nintedanib, an FDA-approved drug for treating IPF, was predicted to further potentiate microvessel regression by decreasing the percentage of quiescent pericytes while increasing the percentage of pericytes undergoing pericyte-myofibroblast transition (PMT) in high ECM stiffnesses. Importantly, the model suggested that YAP/TAZ inhibition may overcome the deleterious effects of nintedanib by promoting EC-pericyte coupling and maintaining microvessel homeostasis. Overall, our combination of computational and experimental modeling can explain how cell decisions affect tissue changes during disease and in response to treatments.

2.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659897

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a morbid fibrotic lung disease with limited treatment options. The pathophysiology of IPF remains poorly understood, and elucidation of the cellular and molecular mechanisms of IPF pathogenesis is key to the development of new therapeutics. B-1 cells are an innate B cell population which play an important role linking innate and adaptive immunity. B-1 cells spontaneously secrete natural IgM and prevent inflammation in several disease states. One class of these IgM recognize oxidation-specific epitopes (OSE), which have been shown to be generated in lung injury and to promote fibrosis. A main B-1 cell reservoir is the pleural space, adjacent to the typical distribution of fibrosis in IPF. In this study, we demonstrate that B-1 cells are recruited to the lung during injury where they secrete IgM to OSE (IgM OSE ). We also show that the pleural B-1 cell reservoir responds to lung injury through regulation of the chemokine receptor CXCR4. Mechanistically we show that the transcription factor Id3 is a novel negative regulator of CXCR4 expression. Using mice with B-cell specific Id3 deficiency, a model of increased B-1b cells, we demonstrate decreased bleomycin-induced fibrosis compared to littermate controls. Furthermore, we show that mice deficient in secretory IgM ( sIgM -/- ) have higher mortality in response to bleomycin-induced lung injury, which is partially mitigated through airway delivery of the IgM OSE E06. Additionally, we provide insight into potential mechanisms of IgM in attenuation of fibrosis through RNA sequencing and pathway analysis, highlighting complement activation and extracellular matrix deposition as key differentially regulated pathways.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38589640

RESUMO

The term 'fibroblast' often serves as a catch-all for a diverse array of mesenchymal cells, including perivascular cells, stromal progenitor cells and bona fide fibroblasts. Although phenotypically similar, these subpopulations are functionally distinct, maintaining tissue integrity and serving as local progenitor reservoirs. In response to tissue injury, these cells undergo a dynamic fibroblast-myofibroblast transition, marked by extracellular matrix secretion and contraction of actomyosin-based stress fibres. Importantly, whereas transient activation into myofibroblasts aids in tissue repair, persistent activation triggers pathological fibrosis. In this Review, we discuss the roles of mechanical cues, such as tissue stiffness and strain, alongside cell signalling pathways and extracellular matrix ligands in modulating myofibroblast activation and survival. We also highlight the role of epigenetic modifications and myofibroblast memory in physiological and pathological processes. Finally, we discuss potential strategies for therapeutically interfering with these factors and the associated signal transduction pathways to improve the outcome of dysregulated healing.

4.
Sci Transl Med ; 16(742): eadi4490, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598613

RESUMO

Uncontrolled bleeding after trauma represents a substantial clinical problem. The current standard of care to treat bleeding after trauma is transfusion of blood products including platelets; however, donated platelets have a short shelf life, are in limited supply, and carry immunogenicity and contamination risks. Consequently, there is a critical need to develop hemostatic platelet alternatives. To this end, we developed synthetic platelet-like particles (PLPs), formulated by functionalizing highly deformable microgel particles composed of ultralow cross-linked poly (N-isopropylacrylamide) with fibrin-binding ligands. The fibrin-binding ligand was designed to target to wound sites, and the cross-linking of fibrin polymers was designed to enhance clot formation. The ultralow cross-linking of the microgels allows the particles to undergo large shape changes that mimic platelet shape change after activation; when coupled to fibrin-binding ligands, this shape change facilitates clot retraction, which in turn can enhance clot stability and contribute to healing. Given these features, we hypothesized that synthetic PLPs could enhance clotting in trauma models and promote healing after clotting. We first assessed PLP activity in vitro and found that PLPs selectively bound fibrin and enhanced clot formation. In murine and porcine models of traumatic injury, PLPs reduced bleeding and facilitated healing of injured tissue in both prophylactic and immediate treatment settings. We determined through biodistribution experiments that PLPs were renally cleared, possibly enabled by ultrasoft particle properties. The performance of synthetic PLPs in the preclinical studies shown here supports future translational investigation of these hemostatic therapeutics in a trauma setting.


Assuntos
Hemostáticos , Roedores , Animais , Camundongos , Suínos , Roedores/metabolismo , Distribuição Tecidual , Plaquetas/metabolismo , Hemorragia , Fibrina/química , Fibrina/metabolismo
5.
Matrix Biol ; 121: 179-193, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422024

RESUMO

Integrins are cellular receptors that bind the extracellular matrix (ECM) and facilitate the transduction of biochemical and biophysical microenvironment cues into cellular responses. Upon engaging the ECM, integrin heterodimers must rapidly strengthen their binding with the ECM, resulting in the assembly of force-resistant and force-sensitive integrin associated complexes (IACs). The IACs constitute an essential apparatus for downstream signaling and fibroblast phenotypes. During wound healing, integrin signaling is essential for fibroblast motility, proliferation, ECM reorganization and, ultimately, restoration of tissue homeostasis. Semaphorin 7A (SEMA7a) has been previously implicated in post-injury inflammation and tissue fibrosis, yet little is known about SEMA7a's role in directing stromal cell, particularly fibroblast, behaviors. We demonstrate that SEMA7a regulates integrin signaling through cis-coupling with active integrin α5ß1 on the plasma membrane, enabling rapid integrin adhesion strengthening to fibronectin (Fn) and normal downstream mechanotransduction. This molecular function of SEMA7a potently regulates fibroblast adhesive, cytoskeletal, and migratory phenotype with strong evidence of downstream alterations in chromatin structure resulting in global transcriptomic reprogramming such that loss of SEMA7a expression is sufficient to impair the normal migratory and ECM assembly phenotype of fibroblasts resulting in significantly delayed tissue repair in vivo.


Assuntos
Integrina alfa5beta1 , Mecanotransdução Celular , Integrina alfa5beta1/genética , Integrina alfa5beta1/metabolismo , Integrinas/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Transdução de Sinais , Fibroblastos/metabolismo , Adesão Celular , Matriz Extracelular/metabolismo
6.
Front Immunol ; 14: 1308594, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38292490

RESUMO

Introduction: Up to 30% of hospitalized COVID-19 patients experience persistent sequelae, including pulmonary fibrosis (PF). Methods: We examined COVID-19 survivors with impaired lung function and imaging worrisome for developing PF and found within six months, symptoms, restriction and PF improved in some (Early-Resolving COVID-PF), but persisted in others (Late-Resolving COVID-PF). To evaluate immune mechanisms associated with recovery versus persistent PF, we performed single-cell RNA-sequencing and multiplex immunostaining on peripheral blood mononuclear cells from patients with Early- and Late-Resolving COVID-PF and compared them to age-matched controls without respiratory disease. Results and discussion: Our analysis showed circulating monocytes were significantly reduced in Late-Resolving COVID-PF patients compared to Early-Resolving COVID-PF and non-diseased controls. Monocyte abundance correlated with pulmonary function forced vital capacity and diffusion capacity. Differential expression analysis revealed MHC-II class molecules were upregulated on the CD8 T cells of Late-Resolving COVID-PF patients but downregulated in monocytes. To determine whether these immune signatures resembled other interstitial lung diseases, we analyzed samples from Idiopathic Pulmonary Fibrosis (IPF) patients. IPF patients had a similar marked decrease in monocyte HLA-DR protein expression compared to Late-Resolving COVID-PF patients. Our findings indicate decreased circulating monocytes are associated with decreased lung function and uniquely distinguish Late-Resolving COVID-PF from Early-Resolving COVID-PF, IPF, and non-diseased controls.


Assuntos
COVID-19 , Fibrose Pulmonar Idiopática , Humanos , Monócitos , Leucócitos Mononucleares , Pulmão
7.
Matrix Biol Plus ; 15: 100117, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35898192

RESUMO

Increasingly, the matrisome, a set of proteins that form the core of the extracellular matrix (ECM) or are closely associated with it, has been demonstrated to play a key role in tumor progression. However, in the context of gynecological cancers, the matrisome has not been well characterized. A holistic, yet targeted, exploration of the tumor microenvironment is critical for better understanding the progression of gynecological cancers, identifying key biomarkers for cancer progression, establishing the role of gene expression in patient survival, and for assisting in the development of new targeted therapies. In this work, we explored the matrisome gene expression profiles of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), uterine corpus endometrial carcinoma (UCEC), and uterine carcinosarcoma (UCS) using publicly available RNA-seq data from The Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) portal. We hypothesized that the matrisomal expression patterns of CESC, UCEC, and UCS would be highly distinct with respect to genes which are differentially expressed and hold inferential significance with respect to tumor progression, patient survival, or both. Through a combination of statistical and machine learning analysis techniques, we identified sets of genes and gene networks which characterized each of the gynecological cancer cohorts. Our findings demonstrate that the matrisome is critical for characterizing gynecological cancers and transcriptomic mechanisms of cancer progression and outcome. Furthermore, while the goal of pan-cancer transcriptional analyses is often to highlight the shared attributes of these cancer types, we demonstrate that they are highly distinct diseases which require separate analysis, modeling, and treatment approaches. In future studies, matrisome genes and gene ontology terms that were identified as holding inferential significance for cancer stage and patient survival can be evaluated as potential drug targets and incorporated into in vitro models of disease.

8.
J Heart Lung Transplant ; 41(8): 1044-1054, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35691796

RESUMO

BACKGROUND: Long-term survival of lung transplants lags behind other solid organs due to early onset of a fibrotic form of chronic rejection known as chronic lung allograft dysfunction (CLAD). Preventing CLAD is difficult as multiple immunologic and physiologic insults contribute to its development. Targeting fibroblast activation, which is the final common pathway leading to CLAD, offers the opportunity to ameliorate fibrosis irrespective of the initiating insult. Thy-1 is a surface glycoprotein that controls fibroblast differentiation and activation. METHODS: To study the role of Thy-1 in CLAD, we utilized the minor antigen mismatched C57BL/6 (B6wild-type) or B6Thy-1-/-→C57BL/10 (B10) model of murine orthotopic lung transplantation with postoperative bacterial infection modeled by intratracheal lipopolysaccharide (LPS) administration. The effects of LPS on Thy-1 expression, proliferation, and gene expression were assessed in fibroblasts in vitro and the therapeutic potential of Thy-1 replacement was assessed in vivo. RESULTS: More severe CLAD was evident in B6Thy-1-/- →B10 grafts compared to B6wild-type →B10 grafts. LPS further accentuated fibrosis in B6wild-type →B10 grafts with some, but limited, effects on B6Thy-1-/- →B10 grafts. LPS contributed to Thy-1 loss from Thy-1(+) fibroblasts in vitro due to a decrease in mRNA expression. In addition, LPS promoted proliferation and upregulation of multiple inflammatory pathways in Thy-1(-) fibroblasts by gene expression analysis. Most importantly, replacement of Thy-1 through exogenous administration ameliorated the fibrotic phenotype post-LPS mediated modeling of infection. CONCLUSIONS: Our findings suggest that the loss of Thy-1 on fibroblasts is a previously unrecognized cause of CLAD and its replacement may offer therapeutic applications for amelioration of this disease post-transplantation in the setting of infectious stress responses.


Assuntos
Lipopolissacarídeos , Transplante de Pulmão , Aloenxertos , Animais , Fibrose , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Células Estromais
9.
Front Cell Dev Biol ; 10: 928510, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733855

RESUMO

Thy-1 is a cell surface glycosylphosphatidylinositol (GPI)-anchored glycoprotein that bears a broad mosaic of biological roles across various cell types. Thy-1 displays strong physiological and pathological implications in development, cancer, immunity, and tissue fibrosis. Quite uniquely, Thy-1 is capable of mediating integrin-related signaling through direct trans- and cis-interaction with integrins. Both interaction types have shown distinctive roles, even when interacting with the same type of integrin, where binding in trans or in cis often yields divergent signaling events. In this review, we will revisit recent progress and discoveries of Thy-1-integrin interactions in trans and in cis, highlight their pathophysiological consequences and explore other potential binding partners of Thy-1 within the integrin regulation/signaling paradigm.

10.
Cell Mol Bioeng ; 14(5): 427-440, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34777602

RESUMO

INTRODUCTION: Tissue fibrosis is characterized by progressive extracellular matrix (ECM) stiffening and loss of viscoelasticity that ultimately impairs organ functionality. Cells bind to the ECM through integrins, where αv integrin engagement in particular has been correlated with fibroblast activation into contractile myofibroblasts that drive fibrosis progression. There is a significant unmet need for in vitro hydrogel systems that deconstruct the complexity of native tissues to better understand the individual and combined effects of stiffness, viscoelasticity, and integrin engagement on fibroblast behavior. METHODS: We developed hyaluronic acid hydrogels with independently tunable cell-instructive properties (stiffness, viscoelasticity, ligand presentation) to address this challenge. Hydrogels with mechanics matching normal or fibrotic lung tissue were synthesized using a combination of covalent crosslinks and supramolecular interactions to tune viscoelasticity. Cell adhesion was mediated through incorporation of either RGD peptide or engineered fibronectin fragments promoting preferential integrin engagement via αvß3 or α5ß1. RESULTS: On fibrosis-mimicking stiff elastic hydrogels, preferential αvß3 engagement promoted increased spreading, actin stress fiber organization, and focal adhesion maturation as indicated by paxillin organization in human lung fibroblasts. In contrast, preferential α5ß1 binding suppressed these metrics. Viscoelasticity, mimicking the mechanics of healthy tissue, largely curtailed fibroblast spreading and focal adhesion organization independent of adhesive ligand type, highlighting its role in reducing fibroblast-activating behaviors. CONCLUSIONS: Together, these results provide new insights into how mechanical and adhesive cues collectively guide disease-relevant cell behaviors. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12195-021-00672-1.

11.
Cell Rep ; 36(8): 109616, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34433061

RESUMO

Vascular development is a complex multistep process involving the coordination of cellular functions such as migration, proliferation, and differentiation. How mechanical forces generated by cells and transmission of these physical forces control vascular development is poorly understood. Using an endothelial-specific genetic model in mice, we show that deletion of the scaffold protein Angiomotin (Amot) inhibits migration and expansion of the physiological and pathological vascular network. We further show that Amot is required for tip cell migration and the extension of cellular filopodia. Exploiting in vivo and in vitro molecular approaches, we show that Amot binds Talin and is essential for relaying forces between fibronectin and the cytoskeleton. Finally, we provide evidence that Amot is an important component of the endothelial integrin adhesome and propose that Amot integrates spatial cues from the extracellular matrix to form a functional vascular network.


Assuntos
Citoesqueleto/metabolismo , Fibronectinas/metabolismo , Integrinas/metabolismo , Neovascularização Fisiológica/fisiologia , Angiomotinas/metabolismo , Animais , Membrana Celular/metabolismo , Movimento Celular/fisiologia , Endotélio/metabolismo , Camundongos Transgênicos , Substitutos do Plasma/farmacologia , Pseudópodes/metabolismo
12.
Matrix Biol Plus ; 10: 100056, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34195593

RESUMO

Of the many origins of pulmonary myofibroblasts, microvascular pericytes are a known source. Prior literature has established the ability of pericytes to transition into myofibroblasts, but provide limited insight into molecular cues that drive this process during lung injury repair and fibrosis. Fibronectin and RGD-binding integrins have long been considered pro-fibrotic factors in myofibroblast biology, and here we test the hypothesis that these known myofibroblast cues coordinate pericyte-to-myofibroblast transitions. Specifically, we hypothesized that αvß3 integrin engagement on fibronectin induces pericyte transition into myofibroblastic phenotypes in the murine bleomycin lung injury model. Myosin Heavy Chain 11 (Myh11)-CreERT2 lineage tracing in transgenic mice allows identification of cells of pericyte origin and provides a robust tool for isolating pericytes from tissues for further evaluation. We used this murine model to track and characterize pericyte behaviors during tissue repair. The majority of Myh11 lineage-positive cells are positive for the pericyte surface markers, PDGFRß (55%) and CD146 (69%), and display typical pericyte morphology with spatial apposition to microvascular networks. After intratracheal bleomycin treatment of mice, Myh11 lineage-positive cells showed significantly increased contractile and secretory markers, as well as αv integrin expression. According to RNASeq measurements, many disease and tissue-remodeling genesets were upregulated in Myh11 lineage-positive cells in response to bleomycin-induced lung injury. In vitro, blocking αvß3 binding through cycloRGDfK prevented expression of the myofibroblastic marker αSMA relative to controls. In response to RGD-containing provisional matrix proteins present in lung injury, pericytes may alter their integrin profile.

13.
Adv Ther (Weinh) ; 4(5)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34095458

RESUMO

Native platelets are crucial players in wound healing. Key to their role is the ability of their surface receptor GPIIb/IIIa to bind fibrin at injury sites, thereby promoting clotting. When platelet activity is impaired as a result of traumatic injury or certain diseases, uncontrolled bleeding can result. To aid clotting and tissue repair in cases of poor platelet activity, our lab has previously developed synthetic platelet-like particles capable of promoting clotting and improving wound healing responses. These are constructed by functionalizing highly deformable hydrogel microparticles (microgels) with fibrin-binding ligands including a fibrin-specific whole antibody or a single-domain variable fragment. To improve the translational potential of these clotting materials, we explored the use of fibrin-binding peptides as cost-effective, robust, high-specificity alternatives to antibodies. Herein, we present the development and characterization of soft microgels decorated with the peptide AHRPYAAK that mimics fibrin knob 'B' and targets fibrin hole 'b'. These "Fibrin-Affine Microgels with Clotting Yield" (FAMCY) were found to significantly increase clot density in vitro and decrease bleeding in a rodent trauma model in vivo. These results indicate that FAMCYs are capable of recapitulating the platelet-mimetic properties of previous designs while utilizing a less costly, more translational design.

14.
Methods Mol Biol ; 2299: 237-261, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34028748

RESUMO

Aberrant deposition of the extracellular matrix (ECM) causes fibrosis and leads to ECM stiffening. This fibrotic ECM provides biological and biophysical stimulations to alter cell activity and drive progression of fibrosis. As an emerging discipline, mechanobiology aims to access the impact of both these cues on cell behavior and relates the reciprocity of mechanical and biological interactions; it incorporates concepts from different fields, like biology and physics, to help study the mechanical and biological facets of fibrosis extensively. A useful experimental platform in mechanobiology is decellularized ECM (dECM), which mimics the native microenvironment more accurately than standard 2D culture techniques as its composition includes similar ECM protein components and stiffness. dECM, therefore, generates more reliable results that better recapitulate in vivo fibrosis.


Assuntos
Técnicas de Cultura de Células/métodos , Matriz Extracelular/patologia , Miofibroblastos/patologia , Animais , Fenômenos Biomecânicos , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fibrose , Humanos , Espectrometria de Massas , Microscopia de Força Atômica , Modelos Biológicos , Miofibroblastos/metabolismo
15.
Sci Rep ; 10(1): 15724, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973293

RESUMO

Cachexia is a progressive muscle wasting disease that contributes to death in a wide range of chronic diseases. Currently, the cachexia field lacks animal models that recapitulate the long-term kinetics of clinical disease, which would provide insight into the pathophysiology of chronic cachexia and a tool to test therapeutics for disease reversal. Toxoplasma gondii (T. gondii) is a protozoan parasite that uses conserved mechanisms to infect rodents and human hosts. Infection is lifelong and has been associated with chronic weight loss and muscle atrophy in mice. We have recently shown that T. gondii-induced muscle atrophy meets the clinical definition of cachexia. Here, the longevity of the T. gondii-induced chronic cachexia model revealed that cachectic mice develop perivascular fibrosis in major metabolic organs, including the adipose tissue, skeletal muscle, and liver by 9 weeks post-infection. Development of cachexia, as well as liver and skeletal muscle fibrosis, is dependent on intact signaling through the type I IL-1R receptor. IL-1α is sufficient to activate cultured fibroblasts and primary hepatic stellate cells (myofibroblast precursors in the liver) in vitro, and IL-1α is elevated in the sera and liver of cachectic, suggesting a mechanism by which chronic IL-1R signaling could be leading to cachexia-associated fibrosis.


Assuntos
Caquexia/parasitologia , Cirrose Hepática/parasitologia , Músculo Esquelético/parasitologia , Receptores de Interleucina-1/metabolismo , Toxoplasmose/complicações , Animais , Caquexia/metabolismo , Caquexia/patologia , Modelos Animais de Doenças , Fibrose/metabolismo , Fibrose/patologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Interleucina-1alfa/farmacologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/parasitologia , Atrofia Muscular/patologia , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Transdução de Sinais/fisiologia , Toxoplasmose/metabolismo , Toxoplasmose/patologia
16.
Matrix Biol ; 91-92: 1-7, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32504772

RESUMO

Extracellular matrix (ECM) is the foundation on which all cells and organs converge to orchestrate normal physiological functions. In the setting of pathology, the ECM is modified to incorporate additional roles, with modifications including turnover of existing ECM and deposition of new ECM. The fibroblast is center stage in coordinating both normal tissue homeostasis and response to disease. Understanding how fibroblasts work under normal conditions and are activated in response to injury or stress will provide mechanistic insight that triggers discovery of new therapeutic treatments for a wide range of disease. We highlight here fibroblast roles in the cancer, lung, and heart as example systems where fibroblasts are major contributors to homeostasis and pathology.


Assuntos
Proteínas da Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Hipertensão/metabolismo , Infarto do Miocárdio/metabolismo , Neoplasias/metabolismo , Matriz Extracelular/química , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Regulação da Expressão Gênica , Homeostase/genética , Humanos , Hipertensão/genética , Hipertensão/patologia , Inflamação , Pulmão/metabolismo , Pulmão/patologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Neoplasias/genética , Neoplasias/patologia , Células Estromais/metabolismo , Células Estromais/patologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Via de Sinalização Wnt
17.
Matrix Biol ; 91-92: 152-166, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32416243

RESUMO

Complex intercellular interactions as well as biomolecular and biomechanical cues from the extracellular matrix (ECM) profoundly affect cellular functions. Traditional transcriptomic and proteomic approaches have provided insight into disease progression by identifying discrete cellular subpopulations or microenvironmental signatures characteristic of normal or pathological tissues, however these techniques do not examine how a given cellular state relates to its interactions with neighboring cells or its surrounding ECM with multiparametric characterization (i.e. ECM alignment, mechanical forces, crosslinking, etc.). Emerging spatial-omic techniques can provide high-resolution mapping of expression profiles similar to scRNA-seq and mass spectroscopy directly within tissues. The ability to preserve the spatial context of cells within samples, their cellular geometry, as well as their surrounding ECM gives spatial-omics the opportunity to interrogate previously unexplored signaling modalities, which has the potential to revolutionize ECM research and our understanding of fibrotic diseases. In this review, we present current spatial transcriptomic and proteomic techniques and discuss how they may be applied to investigate cell-ECM interactions.


Assuntos
Proteínas da Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrose/genética , Proteômica/métodos , Transcriptoma , Animais , Fenômenos Biomecânicos/genética , Linhagem da Célula/genética , Matriz Extracelular/química , Matriz Extracelular/patologia , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/patologia , Fibrose/metabolismo , Fibrose/patologia , Corantes Fluorescentes/química , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Hibridização in Situ Fluorescente/métodos , Imagem Molecular/métodos , Proteômica/instrumentação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Imagem Individual de Molécula/métodos
18.
Matrix Biol ; 91-92: 35-50, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32438056

RESUMO

The architectural complexity of the lung is crucial to its ability to function as an organ of gas exchange; the branching tree structure of the airways transforms the tracheal cross-section of only a few square centimeters to a blood-gas barrier with a surface area of tens of square meters and a thickness on the order of a micron or less. Connective tissue comprised largely of collagen and elastic fibers provides structural integrity for this intricate and delicate system. Homeostatic maintenance of this connective tissue, via a balance between catabolic and anabolic enzyme-driven processes, is crucial to life. Accordingly, when homeostasis is disrupted by the excessive production of connective tissue, lung function deteriorates rapidly with grave consequences leading to chronic lung conditions such as pulmonary fibrosis. Understanding how pulmonary fibrosis develops and alters the link between lung structure and function is crucial for diagnosis, prognosis, and therapy. Further information gained could help elaborate how the healing process breaks down leading to chronic disease. Our understanding of fibrotic disease is greatly aided by the intersection of wet lab studies and mathematical and computational modeling. In the present review we will discuss how multi-scale modeling has facilitated our understanding of pulmonary fibrotic disease as well as identified opportunities that remain open and have produced techniques that can be incorporated into this field by borrowing approaches from multi-scale models of fibrosis beyond the lung.


Assuntos
Tecido Elástico/metabolismo , Proteínas da Matriz Extracelular/genética , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Modelos Biológicos , Doença Crônica , Simulação por Computador , Tecido Conjuntivo/metabolismo , Tecido Conjuntivo/patologia , Citocinas/genética , Citocinas/metabolismo , Tecido Elástico/química , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Homeostase/genética , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Inflamação , Pulmão/patologia , Transdução de Sinais , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
19.
Adv Healthc Mater ; 9(8): e1901445, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32037719

RESUMO

Biophysical cues stemming from the extracellular environment are rapidly transduced into discernible chemical messages (mechanotransduction) that direct cellular activities-placing the extracellular matrix (ECM) as a potent regulator of cell behavior. Dynamic reciprocity between the cell and its associated matrix is essential to the maintenance of tissue homeostasis and dysregulation of both ECM mechanical signaling, via pathological ECM turnover, and internal mechanotransduction pathways contribute to disease progression. This review covers the current understandings of the key modes of signaling used by both the cell and ECM to coregulate one another. By taking an outside-in approach, the inherent complexities and regulatory processes at each level of signaling (ECM, plasma membrane, focal adhesion, and cytoplasm) are captured to give a comprehensive picture of the internal and external mechanoregulatory environment. Specific emphasis is placed on the focal adhesion complex which acts as a central hub of mechanical signaling, regulating cell spreading, migration, proliferation, and differentiation. In addition, a wealth of available knowledge on mechanotransduction is curated to generate an integrated signaling network encompassing the central components of the focal adhesion, cytoplasm and nucleus that act in concert to promote durotaxis, proliferation, and differentiation in a stiffness-dependent manner.


Assuntos
Matriz Extracelular , Mecanotransdução Celular , Biofísica , Diferenciação Celular , Proliferação de Células
20.
Am J Transplant ; 19(10): 2705-2718, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31278849

RESUMO

Despite standardized postoperative care, some lung transplant patients suffer multiple episodes of acute and chronic rejection while others avoid graft problems for reasons that are poorly understood. Using an established model of C57BL/10 to C57BL/6 minor antigen mismatched single lung transplantation, we now demonstrate that the recipient microbiota contributes to variability in the alloimmune response. Specifically, mice from the Envigo facility in Frederick, Maryland contain nearly double the number of CD4+ Foxp3+ regulatory T cells (Tregs ) than mice from the Jackson facility in Bar Harbor, Maine or the Envigo facility in Indianapolis, Indiana (18 vs 9 vs 7%). Lung graft recipients from the Maryland facility thus do not develop acute or chronic rejection. Treatment with broad-spectrum antibiotics decreases Tregs and increases both acute and chronic graft rejection in otherwise tolerant strains of mice. Constitutive depletion of regulatory T cells, using Foxp3-driven expression of diphtheria toxin receptor, leads to the development of chronic rejection and supports the role of Tregs in both acute and chronic alloimmunity. Taken together, our data demonstrate that the microbiota of certain individuals may contribute to tolerance through Treg -dependent mechanisms and challenges the practice of indiscriminate broad-spectrum antibiotic use in the perioperative period.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Comércio/normas , Fatores de Transcrição Forkhead/fisiologia , Rejeição de Enxerto/prevenção & controle , Pneumopatias/imunologia , Transplante de Pulmão/efeitos adversos , Microbiota , Linfócitos T Reguladores/imunologia , Aloenxertos , Animais , Linfócitos T CD4-Positivos/microbiologia , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/metabolismo , Sobrevivência de Enxerto/imunologia , Pneumopatias/microbiologia , Pneumopatias/cirurgia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/microbiologia , Transplantados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...